Зависимость свойств элементов от строения их атомов
Теория строения атомов объясняет периодическое изменение свойств элементов при увеличении порядкового номера.
Важнейшими свойствами элементов являются металличность (металлические свойства) и неметалличность (неметаллические свойства).
Металличность — это способность атомов элемента отдавать электроны. Количественной характеристикой металличности элемента является энергия ионизации (I).
Энергия ионизации атома — это количество энергии, которое необходимо для отрыва электрона от атома элемента (Э), т. е. для превращения атома в положительно заряженный ион:
Э0 + I = Э+ + ē
Чем меньше энергия ионизации, тем легче атом отдает электрон, тем сильнее металлические свойства элемента.
Неметалличность — это способность атомов элемента присоединять электроны.
Количественной характеристикой неметалличности элемента является сродство к электрону (Еср). Сродство к электрону — это энергия, которая выделяется при присоединении электрона к нейтральному атому, т. е. при превращении атома в отрицательно заряженный ион:
Э0 + ē = Э— + Еср
Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем сильнее неметаллические свойства элемента.
Универсальной характеристикой металличности и неметалличности элементов является электроотрицательность элемента (ЭО).
Электроотрицательность элемента характеризует способность его атомов притягивать к себе электроны, которые участвуют в образовании химических связей с другими атомами в молекуле.
Чем больше металличность, тем меньше ЭО.
Чем больше неметалличность, тем больше ЭО.
При определении значений относительной электроотрицательности различных элементов за единицу принята ЭО лития.
Относительная электроотрицательность элементов I – IV периодов
Рассмотрим, как изменяются некоторые характеристики элементов в малых периодах слева направо:
— Заряд ядер атомов увеличивается.
— Число электронных слоев атомов не изменяется.
— Число электронов на внешнем слое атомов увеличивается от до 8.
— Радиус атомов уменьшается.
— Прочность связи электронов внешнего слоя с ядром увеличивается.
— Энергия ионизации увеличивается.
— Сродство к электрону увеличивается.
— Электроотрицательность увеличивается.
— Металличность элементов уменьшается.
— Неметалличность элементов увеличивается.
В больших периодах с увеличением заряда ядер электронное строение атомов изменяется сложнее, чем в малых периодах. Поэтому и изменение свойств элементов в больших периодах более сложное.
Рассмотрим это изменение свойств на примере четвертого периода. Он начинается, как и малые периоды, двумя s-элементами — K и Са, в атомах которых на внешнем слое находится соответственно 1 и 2 электрона. Эти элементы имеют наибольшие радиусы атомов среди всех элементов IV периода, поэтому электроны внешнего слоя слабо связаны с атомами, и эти элементы являются типичными металлами. Эти элементы имеют самые низкие в IV периоде значения ЭО.
В атомах следующих десяти элементов (от Sc до Zn) происходит заполнение d-подуровня предвнешнего слоя; на внешнем слое число электронов в атомах всех этих элементов равно 2 или 1 (Cr, Сu). Радиусы атомов d-элементов мало различаются между собой. Поэтому d-элементы похожи по своим свойствам — все они являются металлами (но менее активными, чем K и Са, которые имеют меньшие заряды ядер и большие радиусы атомов). ЭО всех d-элементов IV периода изменяется в небольшом интервале от 1,3 до 1,9.
В атомах последних шести элементов IV периода (от Gа до Kr) заполняется р-подуровень внешнего слоя, поэтому количество электронов на внешнем слое увеличивается от 3 до 8. Радиусы атомов этих элементов уменьшаются слева направо. Уменьшение радиуса атомов и увеличение числа электронов на внешнем слое являются причиной уменьшения металличности и увеличения неметалличности элементов слева направо. ЭО этих элементов изменяется от 1,6 у Gа до 2,8 y Br.
Рассмотрим, как изменяются некоторые характеристики элементов в главных подгруппах сверху вниз:
В малых периодах закономерно изменяется высшая валентностъ элементов: во втором периоде от I у Li до V у N; в третьем периоде от у Na до VII у Cl. В большом четвертом периоде высшая валентность увеличивается от I у K до VII у Мn; у следующих элементов она понижается до II у Zn, а потом снова увеличивается от III у Gа до VII у Вr.
Периодическое изменение высшей валентности объясняется периодическим изменением числа валентных электронов в атомах.
Валентные электроны — это электроны, которые могут участвовать в образовании химических связей.
В атомах s- и р-элементов валентными являются, как правило, все электроны внешнего слоя.
В атомах d-валентными являются электроны внешнего слоя (2 или 1), а также все или некоторые d-электроны предвнешнего слоя.
Число валентных электронов для большинства элементов равно номеру группы.
Значение периодического закона и периодической системы элементов Д. И. Менделеева
Ученые разных стран — У. Одлинг и Дж. Ньюлендс (Англия), Ж. Дюма и А. Шанкуртуа (Франция), И. Деберёйнер и Л. Мёйер (Германия) и другие пытались классифицировать химические элементы. Они установили существование групп, похожих по свойствам элементов, но не обнаружили взаимосвязь всех химических элементов. Эту взаимосвязь открыл великий русский ученый Д. И. Менделеев и выразил ее в периодическом законе. На основе периодического закона Д. И. Менделеев предсказал существование двенадцати элементов, которые в то время еще не были открыты и определил их положение в периодической системе. Свойства трех из этих элементов он подробно описал и условно назвал их «экабором», «экаалюминием» и «экасилицием», так как считал, что эти элементы должны быть похожи по свойствам на бор, алюминий и кремний. Через несколько лет (еще при жизни Менделеева) эти элементы были открыты и получили названия — галлий Gа, скандий Sc и германий Gе.
Физический смысл периодического закона стал понятен после создания теории строения атома. Но сама эта теория развивалась на основе периодического закона и периодической системы.
Периодический закон — один из основных законов природы и важнейший закон химии. Современный этап развития химической науки начинается с открытия периодического закона. Он помогает ученым создавать новые химические элементы и новые соединения элементов, получать вещества с нужными свойствами. Этот закон играет важную роль в развитии всего естествознания (физики, биологии и других наук).
Периодический закон имеет большое философское значение — он подтвердил наиболее общие законы развития природы.
Комментарии 0