Спирты

Формула винного, или этилового, спирта (этанола) С2Н5ОН, несомненно, знакома многим даже совершенно далёким от химии людям. Это соединение, которое образуется при ферментативном брожении крахмала, глюкозы и фруктозы, в быту называют просто спиртом.

Получение вина путём сбраживания виноградного сока было освоено людьми уже несколько тысячелетий назад. Однако чистый спирт, содержащий лишь незначительное количество воды, выделили при перегонке вина только в XIII в. В Средние века стали известны многие свойства винного спирта, например горючесть (одно из его латинских названий — aqua ardens, что в переводе означает «огненная вода») и способность извлекать из листьев, плодов и кореньев содержащиеся в них биологически активные вещества и красители (полученные растворы в быту называют настойками). Алхимик Арнальдо из Вилановы упоминает спирт в числе медикаментов и противоядий.

Слово «спирт» происходит от древнего латинского названия этого вещества — spiritus vini («дух вина»). Этот термин до сих пор используется в медицине при записи рецептов. В XVI в. в западноевропейских языках, а в XVIII в. и в русском у винного спирта появилось название — алкоголь (араб. «ал-кугул»).

Безводный (абсолютный) этиловый спирт был впервые получен лишь в 1796 г. российским химиком Товием Егоровичем Ловицем и немецким ученым Иеремией Вениамином Рихтером. Для этой цели они применяли вещества, связывающие воду, например оксид кальция (негашёную известь). Абсолютный спирт легко поглощает влагу воздуха, поэтому его хранят в плотно закрытых сосудах.

Спирты (алкоголи) – это производные углеводородов, содержащие в молекуле одну или несколько гидроксильных групп – ОН у насыщенных атомов углерода.

Общая формула спиртов: R(OH)m, m≥1, где R – УВ радикал; m – число функциональных гидроксильных групп – ОН, которое определяет атомность спирта.

Классификация спиртов по строению УВ радикала:

Классификация спиртов по атомности:

Предельные одноатомные спирты (алканолы)

Общая формула: CnH2n+1OH, n≥1

Гомологический ряд

Изомерия и номенклатура

Первые два члена гомологического ряда – СН3ОН и С2Н5ОН – не имеют изомеров, относящихся к классу спиртов. Для остальных алканолов возможны 2 типа изомерии (в пределах своего класса):

— изомерия цепи (углеродного скелета);

— изомерия положения функциональной группы – ОН.

Спирты изомерны другому классу соединений – простым эфирам (R-O-R):

Электронное строение

Атомы углерода в алканолах находятся в состоянии sp3 -гибридизации. Молекулы алканолов представляют собой диполи. Они содержат полярные связи С—Н, С—О, О—Н. Дипольные моменты связей С → О и О ←Н направлены в сторону атома кислорода, поэтому атом «О» имеет частичный отрицательный заряд δ, а атомы «С» и «Н» — частичные положительные заряды δ+. Полярность связи О—Н больше полярности связи С—О вследствие большей разности электроотрицательностей кислорода и водорода. Однако полярность и этой связи недостаточна для диссоциации ее с образованием ионов Н+. Поэтому спирты являются неэлектролитами.

Физические свойства

Полярность связи О—Н и наличие неподеленных пар электронов на атоме кислорода определяют физические свойства спиртов.

Температуры кипения спиртов больше температуры кипения соответствующих алканов с тем же числом атомов углерода. Это объясняется ассоциацией молекул спиртов вследствие образования межмолекулярных водородных связей.

Водородная связь — это особый вид связи, которая осуществляется при участии атома водорода гидроксильной или аминогруппы одной молекулы и атомами с большой электроотрицательностъю (О, N, F, Сl) другой молекулы. Чем большим положительным зарядом обладает атом водорода и чем больше способность другого атома отдавать свои неподеленные электронные пары, тем легче образуется водородная связь (ВС) и тем она прочнее.

Все алканолы легче воды, бесцветны, жидкие имеют резкий запах, твердые запаха не имеют. Метанол, этанол и пропанол неограниченно растворяются в воде, с увеличением числа углеродных атомов растворимость алканолов в воде уменьшается, высшие спирты не растворяются в воде.

Химические свойства

Химические свойства алканолов определяются особенностями их электронного строения: наличием в их молекулах полярных связей О-Н, С-О, С-Н. Для алканолов характерны реакции, которые идут с расщеплением этих связей: реакции замещения, отщепления, окисления.

I.Реакции замещения

1. Замещение атома водорода гидроксильной группы вследствие разрыва связи О-Н.

а) Взаимодействие с активными металлами с образованием алкоголятов металлов:

2C2H5O[H + 2Na → 2C2H5ONa + H2

Эти реакции протекают только в безводной среде; в присутствии воды алкоголяты полностью гидролизуются:

C2H5ONa + H2O → C2H5OH + NaOH

б) Взаимодействие с органическими и неорганическими кислотами с образованием сложных эфиров (реакции этерификации):

2. Замещение гидроксильной группы вследствие разрыва связи С-О.

а) Взаимодействие с галогеноводородами с образованием галогеналканов:

Следует отметить, что спирты можно превратить в галогенпроизводные действием и других реагентов, например хлоридов фосфора:

R – OH + PCl5 → R – Cl + POCl3 + HCl

б) Взаимодействие с аммиаком с образованием аминов.

Реакции идут при пропускании смеси паров спирта с аммиаком при 300oС над оксидом алюминия:

При избытке спирта алкильными радикалами могут замещаться 2 или 3 атома водорода в молекуле NН3:

II. Реакции отщепления

1.Дегидратация, т.е. отщепление воды

Дегидратация спиртов может быть двух типов: межмолектлярная и внутримолекулярная.

а) Межмолекулярная дегидратация спиртов с образованием простых эфиров R—O—R’. Эти реакции могут протекать с участием одного спирта или смеси двух и более спиртов:

б) Внутримолекулярная дегидратация спиртов с образованием алкенов. Протекает при более высокой температуре. В отличие от межмолекулярной дегидратации в процессе этих реакций происходит отщепление молекулы воды от одной молекулы спирта:

Первый член гомологического ряда алканолов – метанол СН3ОН – не вступает в реакции внутримолекулярной дегидратации.

Дегидратация вторичных и третичных спиртов происходит по правилу Зайцева:

2.Дегидрирование (разрыв связей О – Н и С – Н)

а) При дегидрировании первичных спиртов образуются альдегиды:

В организме человека этот процесс происходит под действием фермента (алкогольдегидрогеназы).

б) При дегидрировании вторичных спиртов образуются кетоны:

в) Третичные спирты не дегидрируются.

III. Реакции окисления

1.Горение (полное окисление)

Спирты горят на воздухе с выделением большого количества тепла:

С2Н5ОН + 3О2 → 2СО2 + 3Н2О

2.Неполное окисление под действием окислителей: кислорода воздуха в присутствии катализаторов (например, Cu), перманганата калия, дихромата калия и др.

Реакции неполного окисления спиртов по своим результатам аналогичны реакциям дегидрирования:

Способы получения алканолов

1.Гидратация алкенов

H2C=CH2 + H2O → CH3 – CH2OH

Кроме прямой гидратации этилена, существует также сернокислотная гидратация, протекающая в две стадии:

— на первой стадии этилен поглощается серной кислотой:

Н2С=СН2 + Н2SO4 → CH3 – CH2 – OSO3H,

— на второй стадии этилсерная кислота гидролизуется с образованием этилового спирта и серной кислоты:

CH3 – CH2 – OSO3H + H2O → CH3 – CH2 – OH + H2SO4

При гидратации гомологов этилена в соответствии с правилом Марковникова образуются вторичные или третичные спирты:

2.Гидролиз галогеналканов

При действии водного раствора NaOH атом галогена в галогеналкане замещается группой —ОН:

C2H5Cl + NaOH → C2H5OH + NaCl

Обратите внимание, что при действии спиртового раствора щелочи на галогеналканы происходит отщепление галогеноводорода и образование алкена (см. способы получения алкенов).

3. Гидрирование альдегидов и кетонов

Как уже было отмечено выше, дегидрирование спиртов по своей химической сущности является окислением. Обратная реакция — гидрирование альдегидов и кетонов — является, таким образом, их восстановлением.

В присутствии катализаторов (Ni, Pt, Pd, Со) альдегиды восстанавливаются до первичных спиртов, а кетоны — до вторичных спиртов:

4.Специфические методы получения метанола и этанола

СО + 2Н2 → СН3ОН

Этанол образуется при брожении (ферментации) углеводов – глюкозы или крахмала:

С6Н12О6 → 2С2Н5ОН + 2СО2

Предельные многоатомные спирты

Свойства многоатомных спиртов рассмотрим на примере простейшего трехатомного спирта – глицерина, или пропантриола-1,2,3:

Физические свойства

Глицерин – вязкая, бесцветная, сладковатая на вкус нетоксичная жидкость с tокип.=230оС. Смешивается с водой во всех отношениях.

Химические свойства

I. Замещение атомов водорода гидроксильных групп

1.Как и одноатомные спирты, многоатомные спирты взаимодействуют со щелочными металлами; при этом могут образовываться моно-, ди- и тризамещенные продукты:

2.Наличие нескольких ОН-групп в молекулах многоатомных спиртов обусловливает увеличение подвижности и способности к замещению гидроксильных атомов водорода по сравнению с одноатомными спиртами. Поэтому, в отличие от алканолов, многоатомные спирты взаимодействуют с гидроксидами тяжелых металлов (например, с гидроксидом меди (II) Cu(OH)2. Продуктами этих реакций являются внутрикомплексные («хелатные») соединения, в молекулах которых атом тяжелого металла образует как обычные ковалентные связи Ме←О за счет замещения атомов водорода ОН-групп, так и донорно-акцепторные связи Ме ←О за счет неподеленных электронных пар атомов кислорода других ОН-групп:

Нерастворимый в воде Cu(OH)2 голубого цвета растворяется в глицерине с образованием ярко-синего раствора глицерата меди (II). Эта реакция является качественной реакцией на все многоатомные спирты.

3.Многоатомные спирты, как и одноатомные, взаимодействуют с органическими и неорганическими кислотами с образованием сложных эфиров:

II. Замещение гидроксильных групп

Наиболее известными реакциями этого типа является взаимодействие многоатомных спиртов с галогеноводородами. Например, при взаимодействии глицерина с хлороводородом ОН-группы последовательно замещаются атомами хлора:

Способы получения глицерина

1.Гидролиз жиров – основной способ получения глицерина:

2. Синтез из пропилена

В последнее время глицерин получают из пропилена. Существует несколько вариантов этого синтеза. По одному из них пропилен хлорируют при to = 440—500оС, полученный аллилхлорид гидролизуют раствором NaOH. На полученный в результате гидролиза аллиловый спирт действуют пероксидом водорода Н2О2, который в присутствии катализатора присоединяется к спирту по двойной связи с образованием глицерина. Весь процесс можно представить схемой:

Применение важнейших спиртов

 В медицине С2Н5ОН применяется как дезинфицирующее средство и средство для компрессов, используется для приготовления экстрактов и настоек, как растворитель для многих лекарственных препаратов.

Скачать:

Скачать бесплатно реферат на тему: «Спирты» Спирты.docx (Одна Загрузка)

Скачать бесплатно реферат на тему: «Синтез этилового спирта»  Синтез-этилового-спирта.docx (18 Загрузок)

Скачать бесплатно реферат на тему: «Синтез метанола из оксида углерода и водорода»  Синтез-метанола-из-оксида-углерода-и-водорода.docx (18 Загрузок)

Скачать рефераты по другим темам можно здесь

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *