Актиноиды

В отличие от лантанидов, все 5f-элементы радиоактивны, т. е. не имеют стабильных изотопов. И если для тория и урана существуют изотопы, период полураспада которых измеряется миллиардами лет, то время жизни трансурановых, т. е. следующих за ураном, элементов, как правило, уменьшается с увеличением порядкового номера. Очевидно, что если элемент живет лишь доли секунды, это создаёт значительные трудности в изучении его химических свойств.

Из всего семейства актиноидов в природе в заметном количестве встречаются лишь торий и уран, находящиеся в начале ряда. Остальные элементы являются искусственными, синтезированными человеком. Одни из трансурановых элементов выделены в количествах сотен тонн (Pu), для других массы исчисляются граммами или даже микрограммами, а некоторые получены лишь в количестве нескольких атомов.

Урановая руда
Урановая руда

Оксид урана U3О8, выделенный в 1789 г. немецким химиком Мартином Клапротом из урановой смоляной руды (урановой смолки), долгое время считали простым веществом. Ему присвоили имя планеты, открытой за восемь лет до этого.

Металлический уран впервые удалось получить в 1841 г. французскому ученому Эжену Пелиго (1811—1890) восстановлением тетрахлорида урана калием: UCl4 + 4К = U + 4KCl. Аналогичным образом Берцелиусом в 1828 г. был получен торий, названный в честь Тора — бога-громовержца в скандинавской мифологии.

Свойства актиноидов

Слиток урана
Уран

Актиноиды — тугоплавкие металлы серебристого цвета. Как и 4f-элементы, они обладают высокой химической активностью. Однако, по сравнению с лантаноидами, между отдельными представителями семейства актиноидов различий больше: у каждого из них свои особенности. Из всех представителей семейства наибольшее практическое значение имеет уран. Одно время, на заре ядерных исследований, век называли даже веком урана.

По внешнему виду уран напоминает сталь: легко поддаётся ковке, полировке, прокатке, тугоплавок (tпл = 1 130 оС). Уран — плохой проводник тепла и электричества: его теплопроводность в 13 раз меньше теплопроводности меди.

Металлический уран легко растворяется в азотной кислоте с образованием желтого раствора нитрата уранила (нитрата диоксоурана)UO2(NO3)2, в котором уран находится в высшей степени окисления +6. Данное вещество может быть получено также при растворении в кислоте оксида урана(VI).

Светло-желтый гидроксид уранила UO2(OH)2 называемый иногда урановой кислотой, проявляет свойства амфотерного соединения. При растворении его в кислотах образуются соли уранила: UO2(OH)2+ 2HCl = UO2Cl2 + 2Н2О, а при действии щелочей получаются уранаты — соли урановой кислоты:

2UO2(NO3)2 + 6NH3∙H2O = (NH4)2U2O7↓ + 3H2O + 4NH4NO3.

Производство урана

торий фото
Торий

Уран принадлежит к числу редких элементов. Однако в земной коре его 2 10-4 %, т. е. больше, чем кадмия, серебра, ртути и висмута. Известно около 200 минералов урана, большинство из них — оксиды переменного состава или сложные уранаты (например, карнотит K2О 2UО3 • V2О5 • 3Н2О, названный в честь французского горного инженера М. Карно). Небольшое количество урана содержится также во фторапатите Ca5(PO4)3(OH,F), монаците, некоторых глинах и сортах гранита. Простейший минерал — уранинит UO2+X. Это диоксид урана, подвергшийся частичному окислению кислородом воздуха либо кислородом, выделившимся в результате перестройки структуры оксида UО2 при радиоактивном превращении урана в свинец при этом образуется оксид РbО, а избыточный кислород, выделяющийся в свободном виде, окисляет уран. Урановая руда считается богатой, если содержит от 0,5 до 1 % урана. На заводах по переработке урановых руд уранинит обогащают, а затем отделяют уран от примесей и выделяют в виде оксида UО2.

Для получения металлического урана диоксид переводят в тетрафторид: UО2 + 4HF = UF4 + 2Н2О и потом восстанавливают металлотермически: UF4 + 2Mg = U + 2MgF2. Возникает вопрос: зачем надо превращать оксид во фторид, если уран можно получать и напрямую из оксида, восстанавливая его кальцием или магнием? Восстановление из фторида предпочтительнее, потому что только в этом случае выделяющегося в ходе реакции тепла достаточно для расплавления и металла, и шлака. Когда расплав охлаждают, образуется слиток урана. А при восстановлении оксида уран получается в виде порошка, который трудно отделить от шлака.

Нитрат уранила

Ядерное топливо

Природный уран представляет собой смесь трех изотопов: 235 U (0,72 %), 238U (99,274 %) и 234U (0,006 %). Для нужд ядерной техники часто необходим уран, обогащенный изотопом 235 U. Это ставит перед исследователями нелегкую задачу разделения изотопов. В промышленности наибольшее распространение приобрёл газодиффузионный метод, основанный на неодинаковой скорости диффузии (проникновения) частиц с различной массой через пористую перегородку – мембрану. Для выделения изотопа 235 U весь металл переводят во фторид UF6 – легколетучее кристаллическое вещество. Процесс разделения повторяют многократно с помощью специального каскада с большим числом ячеек, содержащих пористые перегородки. Для обогащения урана изотопом 235 от исходного его содержания в природной смеси до 95% требуется каскад в 5 тыс. ступеней.

Изотопы 235 U и 238 U обладают одинаковыми химическими, но различными ядерными свойствами. Так, ядра урана-235 при бомбардировке их медленными (тепловыми) нейтронами делятся на части, высвобождая колоссальное количество энергии. Продуктами деления обычно являются ядра элементов середины периодической системы, например, бария, криптона, олова, лантаноидов. При превышении критической массы процесс деления приобретает характер разветвлённой цепной реакции, которая приводит к ядерному взрыву.

Изотоп 238 U не способен делиться под действием пучка нейтронов. Его ядра, захватывая быстрые нейтроны, превращаются в ядра урана-239, который в свою очередь превращается последовательно в нептуний-239 и плутоний-239.

плутоний фото
Плутоний

Изотоп 239Рu, образующийся в ядерных реакторах, тоже используется в качестве ядерного топлива: его ядра способны к делению под действием нейтронов с выделением энергии аналогично урану-235. Плутоний возникает из урана-238 прямо в реакторе и тут же вовлекается в процесс деления.

Изотоп 239Рu, как и 235 U, используют и при изготовлении ядерного оружия. Для 235U критическая масса составляет около 0,8 кг, для 239Рu — 0,5 кг. В момент ядерного взрыва в атомной бомбе специальным образом соединяются два куска ядерного топлива, масса каждого из которых немного меньше критической. Уран — один из самых тяжелых металлов (его плотность 19 г/см3, что почти вдвое превышает плотность свинца), поэтому урановый шар с массой равной критической имел бы радиус всего 2,2 см.

От урана до лоуренсия

Путем бомбардировки урана-238 нейтронами или ядрами легких атомов в 40—50-х гг. ХХ в. удалось синтезировать многие трансурановые элементы.

Большая заслуга в этом принадлежит профессорам Калифорнийского университета Гленну Теодору Сиборгу (1912—1999) и Эдвину Маттисону Макмиллану (1907— 1991), удостоенным в 1951 г. Нобелевской премии по химии.

Первые трансурановые элементы — нептуний (Np, в честь планеты Нептун) и плутоний (Рu, в честь планеты Плутон) образуются при β-распаде ядер урана. Для синтеза следующего элемента (№ 95) потребовалось использование мощных потоков нейтронов, которыми бомбардировали ядра нуклида 239Рu. Этот элемент получил название «америций» (Аm).

Гленн Теодор Сиборг
Гленн Теодор Сиборг

Некоторые элементы, например эйнштейний и фермий, были впервые выделены в 1952 г. из продуктов термоядерного взрыва. В 1955 г. при облучении одного из изотопов эйнштейния ядрами гелия (α-частицами) был получен элемент с порядковым номером 101, который по предложению Сиборга назвали в честь Д И. Менделеева.

Если нептуний, плутоний и америций, подобно урану, образуют устойчивые соединения в высоких степенях окисления: +5, +6 и даже +7 (что для урана невозможно), то последующие актиниды, например менделевий, в своих соединениях обычно трёхвалентны. Хлорид менделевия(III) может быть легко восстановлен в водном растворе до дихлорида:

2MdCl3 + Zn = 2MdCl2 + ZnCl2.

С 60-х гг. параллельные исследования по синтезу трансурановых элементов проводили советские ученые под руководством академика Георгия Николаевича Флёрова в Объединенном институте ядерных исследований (Дубна). Они, в частности, разработали метод определения химических свойств элементов, образующихся в количестве нескольких атомов.

До исследований Сиборга и его коллег периодическая система завершалась ураном. В ней отсутствовало специальное семейство актиноидов, а уран относили к подгруппе хрома.Таким образом, периодическая система приобрела современный вид сравнительно недавно – около полувека назад.

Скачать:

Скачать бесплатно реферат на тему: «Актиноиды»  Актиноиды.docx (19 Загрузок)

Скачать рефераты по другим темам можно здесь

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *